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Consideration is given to the influence of edge effects on rheological measure- 
ments. To facilitate this, we discuss theoretically the flow generated by the slow 
steady rotation of a solid of revolution in an elastico-viscous liquid confined by 
convenient bath surfaces. The relevant linear partial differential equations are 
solved numerically. The simple problem of a rotating sphere and a concentric 
spherical container, for which an exact analytic solution is available, is first 
discussed to justify the method employed, and to indicate the necessary condi- 
tions to obtain a given accuracy. The numerical method is then applied to the 
case of a cone of finite dimensions rotating in a bath of elastico-viscous liquid. 
The predicted flow is shown to be in good agreement with experimental 
observations. 

Application of the theory to rheogoniometric situations indicates that edge 
effects are not likely to be as significant as has been conjectured in the past. 

1. Introduction 
In  an earlier paper (Griffiths, Jones & Walters 1969, referred to in the following 

as part 1))  we indicated that edge effects in the flow of elastico-viscous liquids 
can have a strong influence on flow characteristics, and can, under some condi- 
tions, affect the whole of a flow field. Particular attention was paid to the parallel- 
plate geometry, and it was suggested tentatively that edge effects may have 
unwanted consequences in rheometry. In the present paper, we give detailed 
consideration to this suggestion, and investigate the importance of edge effects in 
rheological measurement. Particular attention will be paid to the cone-and-plate 
geometry, although reference will also be made to the parallel-plate case in the 
section dealing with viscosity and pressure measurements. 

As in part 1, recourse is made to a numerical procedure to solve the flow 
problem. The basic equations of part 1 are first recast in terms of a spherical 
polar co-ordinate system, which is the appropriate system for the cone-and-plate 
geometry. We then discuss the numerical procedure for the case of a sphere 
rotating in an elastico-viscous liquid which fills a stationary concentric spherical 
container. Here, we have available an exact analytic solution for comparison 
(cf. Walters & Waters 1963; Waters 1964). This comparison justifies the 
numerical procedure and also indicates the number of step lengths (and hence 

t Present address : Department of Mathematics, The University, Dundee, Scotland. 
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the ‘computer time ’) required to obtain a given accuracy in the cone-and-plate 
problem. 

The numerical method is then applied bo the cone-and-plate geometry and the 
importance of edge effects in rheological measurement investigated. Where 
possible, the theoretical predictions are compared with experimental 
observations. 

2. Basic equations 
In  the solution of rheological flow problems, the equations of motion and 

continuity have to be solved in conjunction with suitable equations of state. 
For the ‘slow-flow’ problems to be considered in the present paper, it is con- 
venient to consider the so-called second-order equations, which may be written 

where pi,; is the stress tensor, g, the metric tensor of a suitable co-ordinate 
system, eak) the rate-of-strain tensor, e\t) = e$’/8tn-l is called the nth rate- 
of-strain tensor, $/at being the convected time derivative introduced by Oldroyd 
(1950). al, a2 and a3 are material constants and (confining attention to incom- 
pressible fluids) p is an arbitrary isotropic pressure. In (1) and ( Z ) ,  covariant 
suffices are written below, contravariant suffices above, and the usual summation 
convention for repeated suffices is implied. 

Partial justification for using the ‘order’ equations in the type of problem 
under consideration was given in part 1. We shall see that, in somc rheometrical 
situations, they may be considered to be sufficiently general to allow quantitative 
predictions to be made (cf. § 4 (iii)), while in others the predictions are of a more 
tentative and qualitative nature (cf. § 4 (iv)). 

We shall refer all physical quantities to spherical polar co-ordinates (r ,  0, #), 
8 = 0 representing the (vertical) axis of rotation of the sphere in 3 3 and the cone 
in $4. U ,  V and W will denote the physical components of the velocity vector 
in the r ,  8, q3 directions, respectively. 

It is convenient to introduce dimensionless variables (cf. Thomas & Walters 
1964; Walters & Waters 1968, p. 2 l l ) f -  

(7 = V‘lL --, 1’ =- vv w = Slaw, 
U a ’  

p = pgr cos i9 + P V 2  dLp*, r = ar,, 

PLO, (Qa2/v) Prrl4) 

P;lee, (Qa2/v) P’;S$h) 

(Qa2/v) P;@, P b )  
where v = a,/p, a is a typical length, g the acceleration due to gravity, p the 
density of the fluid, and Q is the angular velocity of the sphere in § 3 and the 

t Brackets placed round suffices are used to denote physical components of tensors. 
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cone in § 4. Substituting (3) into the stress equations of motion and the equation 
of continuity, we obtain for steady axially-symmetric flow: 

where 

a a 
ar, ae - (ur; sin 0) + - (vr, sin 0) = 0, (7) 

i.e. the square of a Reynolds number. 
Since we are interested in slow-flow situations, we obtain a solution of ( I ) ,  (2), 

and (4)-(7) by expanding the velocity components and the pressure in ascending 
powers of L, as follows: 

I V 

U 
u = - [Lu, + L2u, + .*.I, 

I V v =-[Lv,+L2w2+ ...I, 
a 

W = Rur, sin O[wo + Lw, + ...I, 
V 2  

p -pgr cos 0 = 5 [ L ~ T  + ~ 2 p g  + ...I. 

From (7), it  is convenient to define a stream function x ,  such that 

(9) 

and we write 

From (2), (6) and (S), it can easily be shown that the equation for wo (which corre- 
sponds t o  the solution when terms of order L are neglected) is 

x = LXl+L2X2+ .... 

where 



382 D. F. Grifitha and K .  Walters 

The equation for the first-order stream function x1 can be obtained from (4)) 
(5) and (9)-(12) in the form, 

where 

(13) 1 awn sin 0 - ~ r1 cos 0 + E(w,,), 
a0 ar , D4x1 = 2r, sin2 0w 

x r l -  rtsin20--O--O aw aw ) + 1 (sin3 0 (%)')I - a; sin 0 cos o [ jl( ar, a0 sin0 a0 

and a; = az/pa2, a; = a3/pa2. E is the contribution to the equation due to the 
elasticity in the fluid. 

Equations (11) and (13) correspond to (14) and (19) of part 1, which were 
derived in somewhat more detail for a cylindrical polar co-ordinate system. 

3. Flow due to a rotating sphere 
We first consider the problem of a sphere of radius a rotating with angula,r 

velocity about a vertical diameter in an elastico-viscous liquid which is con- 
tained in a stationary concentric spherical container of radius /?a (/? > 1).  The 
appropriate boundary conditions are 

I w,, = 1 on r ,  = 1, w,, = 0 on rl =/?, 

1 x, = const., - - - o on rl  = 1 and rl = /?. 
ar1 

Analytic solutions of ( 1  1) and ( 1  3), subject to (16), have been given by Walters 
& Waters (19631, and we shall find it convenient to refer to these for comparison 
purposes. (Also see Waters 1964.) 

To solve (1 1) and (13) numerically, we first write the fourth-order equation 
in 'split-operator' form. The problem then reduces to one of solving a series of 
coupled second-order elliptic partial differential equations. These equations can 
be discretized to produce symmetric matrix equations, which are solved by 
successive line over-relaxation. Further details of the numerical procedure 
may be found in part 1. 

The relevant grid for the rotating-sphere problem is defined by the lines, 

rl = l+ iAr,  i = 0 , 1 , 2  ... n + l ,  

0 =jAB,  j = 0) 1 , 2  ... m+ 1) 



where 

and 
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4r = (p- l ) / ( n +  11, 

46' = n/ (m+ 1). 

The intersection of the lines given by (1 7) are called nodal points and are denoted 
by .Pv. If R represents the domain, 

and aR its boundary, then R, and aR, are the sets of nodal points belonging to 
R and 8R, respectively. From (17), (18) and (19), it is clear that the only inter- 
sections of aR with grid lines are at  nodal points. 

The computed numerical solution for the primary flow velocity E ( = w,r,sin 6') 
is given in figure 1.  Also included is the exact analytic solution given by Walters 
& Waters (1963). It is seen that the two are indistinguishable. 

FIGURE 1. Curves of constant primary flow velocity ;iii for p = 2: + , numerical 
solution (AT = -&, A0 = 7r/20); - , analytic solution. 

If 8(PN) represents the analytic solution for W at the node PN and w(PN) the 
corresponding numerical solution, a suitable measure of the relative difference 
between ii5 and w is the function 6 defined by 

Even for relatively coarse meshes (4r = A, A@ = n/20), E is of the order of 
6 x 10-4, which indicates that accurate finite-difference solutions to the second- 
order equation ( 1  1) are easily obtainable. 
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The numerical method of part 1 has also been used to solve (1 3). The relevant 
results are summarized in figures 2-5, which contain analytic and numerical 
secondary-flow (i.e. x1 = constant) curves for various values of a; and a;.? 
Figures 2 (a)-5 (a) are based on the analytic solution and may be compared with 
similar curves given by Waters (1964). We see that at least four types of flow 
behaviour are possible, depending on the precise values of a; and a;.$ Figures 
2 (b)-5 (b )  contain curves based on the numerical solution for a relatively coarse 

FIGURE 2 
(4 

FIGURE 3 

FIGURE 2 .  Streamline projections for p = 2 and a; + a: = 0. ( a )  Analytic curves for con- 
venient values of xl. (b )  Numerical curves (Ar = g6, A@ = 77/20) for the same values of xl. 
FIGURE 3. Streamline projections for p = 2 and ai+ai = 0.055. (a) Analytic curves for 
convenient values of xl. ( b )  Numerical curves (AT = -&, A0 = 77/20) for the same values 
of xl. (c) Numerical curves (AT = $6, A0 = 77/20) for the same values of x1 used in (5) 

and (b). 

t I t  may be deduced on theoretical grounds that a; is negative, and from experimental 
results that the most likely range of a,' is - 2 a ;  < a; < -2 .5ai .  We have verified that 
varying a; between these limits does not significantly affect the general shape of the 
streamlines, and we take a: = - 2aI throughout. 

$. In  the analytic solution, it is the combination a;+@; which determines the type of 
flow behaviour (cf. Walters & Waters 1963). 
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mesh and figures 3 ( c )  and 4 (c) correspond to a finer grid when the flow field is 
divided into two and three regions, respectively.? We see that the coarser nets 
predict the general form of the flow patterns and that the agreement between the 
analytic and numerical solutions improves noticeably with increasing n in 
figure 4. 

(4 
FIGURE 4 FIGURE 5 

FIGURE 4. Streamline projections for p = 2 and a: + a; = 0.0564. (a )  Analytic curves for 
convenient values of xl. (6) Numerical curves (Ar = -&, A 0  = n/20) for the same values 
of xl. (c) Numerical curves (Ar = &, A0 = n/20) for the same values of x1 used in (a)  
and (b) .  

FIGURE 5. Streamline projections when p = 2 and @;+a; = 0.1. (a )  Analytic curves for 
convenient values of xl. ( b )  Numerical curves (Ar = %A6, A 0  = 77/20) for the same values of xl. 

To elucidate the effect of the number of step lengths on the accuracy of the 
solution, we plot, in figure 6, 6 as a function of n for the values of a6 and a; con- 
sidered in figures 2-5. The number of step lengths required to give a particular 
accuracy is seen to increase significantly with the number of regions in the flow 

7 In  most of the numerical work, we took a constant step length in the 8 direction 
( A 0  = n/20) and varied Ar, since we found that making AT smaller reduces the error 
much more than altering A 8  by an equivalent amount. 

2 5  F L U  42 
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field. For example, a 2 % accuracy in the case of one region (cf. figures 2 and 5) 
requires 10 steps, in the case of two regions (figure 3) requires 50 steps, and for 
three regions (figure 4) requires as many as 100 step lengths. 

The work of 3 3 indicates that the numerical method under consideration is able 
to predict the flow to any desired accuracy when a solid of revolution is rotated 
slowly in an elastico-viscous liquid. It also shows that the size of the mesh required 
to give a particular accuracy is very dependent on the form of the solution. 

0 25 50 i s  100 
Number of increments n 

FIGURE 6. Variation of the error function [, defined in terms of the stream function xl, 
with n when A8 = n/20 and A ,  uL+a; = 0,  B, a;+a; = 0.1, c, a;+@; = 0,055, 
D ,  ai+aS = 0.0564. 

4. Flow due to a rotating cone 
(i) Introduction 

Measurements of the response of an elastico-viscous liquid, when sheared in the 
gap between a rotating cone and a stationary plate, are often used in the charac- 
terization of the non-Newtonian properties of the material. The interpretation 
of such measurements is based on a theory which assumes that both the cone and 
the plate are of infinite extent (Giesekus 1967; Walters & Waters 1968). Section 4 
is devoted to a study of the validity of this assumption. In order to do this, we 
consider the flow due to the slow steady rotation of a cone of finite radius when 
it is immersed in a bath containing an elastico-viscous liquid. Owing to the 
complicated shape of the boundary (see figure 7) analytic methods cannot be 
used, and we resort to the numerical procedure described in part 1 and employed 
in 9 3. We attempt to remain within the limits of grid size imposed by the con- 
clusions of § 3, so that we may have confidence in the results. 
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The basic equations (11) and (13) are solved over the domain R shown in 
figure 7. The boundary of aR of R may be conveniently divided into three parts, 
aR,, aR, and aR,, where aR, refers to OAB, aR, to BC and aR, to ODC. aR, then 
represents the surface of the cone, aR, a convenient bath surface and aR, is 
assumed to be a t  a sufficient distance from the edge A to ensure that the primary 
velocity is the same as that for the concentric-spheres problem (8  3). We further 
assume that there is no secondary flow acsoss this line, i.e. aR, is a streamline. 
This assumption is introduced so that, when the gap angle 8, is small, there is 
a sufjficient proportion of grid points in the important region below the cone. 

I o=o 

FIGURE 7. Domain of integration for the rotating-cone problem. 

The boundary conditions on 5 are now 

(21) 

W = r,sin8 on aR,, 

W = ($ + Dr,) sin 8 on aR,, 

w =  0 on aR,, 
- 

where D = 1/(1 -p3) ,  C = -p3D and p is the radius of the bath ( =  OD). The 
boundary condition on aR, is, of course, obtained from the analytic solution of 
the concentric-spheres problem for convenience. 

The boundary conditions on x,  are 

ax1 X I  = -= an 0 on aR, 

where a/an denotes the normal derivative to the boundary. 
25-2 
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In order to solve ( 1 1 )  and (13) subject to (21) and ( 2 2 ) ,  we first define a grid of 
co-ordinate lines on R. This is done in an analogous fashion to that described in 
$ 3 .  By placing a 'spherical cap' on top of the cone we have a domain whose 
boundaries are all parallel to co-ordinate surfaces.t To ensure that the boundary 
coincides with grid lines we define the integers n, n,, m, m, such that 

where, in the non-dimensionalization (3), we have taken the typical length a to 
be the radius of the cone. 

It will be of interest later to compute the couple on the rotating cone and the 
pressure distribution on the stationary plate. The couple C is given by 

If we assume that the flow is sufficiently slow, we may neglect terms of order L, 
and we have, from ( l ) ,  ( 2 ) ,  (9) and ( 2 4 ) ,  

c = 2nc2a3a1 I ~ ,  (25 )  

where I,, is the non-dimensional integral, 

The pressure on the plate is given by (cf. equation (9)) 

P I 8 4  = a2a2pPl*, (27) 

where, from ( 2 ) ,  ( 4 ) ,  (9) and (21), p: is given by the first-order differential 
equation. 

- 2  ( E i : a L ) ( $ ) 2 1  ~ . ( 2 8 )  
8=nl2 

Further, the normal stress component [ -p(&j&n,2 on the stationary plate is, 
fmm ( I ) ,  (2), (9) and (2% 

where the non-dimensional function Y is given by 

t The effect of the spherical cap on the flow between the cone and the plate will bo 
considered later. 
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For completeness, we note that the expressions for the stream function x1 and 
the pressure on the plate [ -p(ssl]o=n,z would be ths same if we had considered the 
third-order equations instead of the second-order equations (2). The expression 
for the couple C would, however, be modified (cf. Walters & Waters 1968). 

(ii) Analytic theory based on an injnite cone and plate system 

The analytic theory based on an infinite cone and plate has been considered by 
Bhatnagar & Rathna (1962), Mohan Rao (1962), Giesekus (1967), and Walters & 
Waters (1968). In this case, (1 1)  and (13) have to be solved subject to 

w = rlsin8, on 8 = 0,, 
W = 0, on 8 = s / 2 ,  

A solution to the problem exists in the form, 

W = wo r1 sin 8, (33) 

x1 = 8.w + (4 +a;) r!g(@, 
where wo is given by 

and 

(34) 

(35) 

f(8) and g(0) are the solutions of certain fourth-order ordinary differential 
equations which are independent of the material parameters. These have been 
tabulated for various gap angles by Walters & Waters (1968). 

The relevant analytic expressions for the couple and the normal pressure are 

C = 27rQa3 a1 I,, (37) 

where 
and 

where pa is the pressure at  r = a. 

(iii) Flow situations for  wide-gap angles 

Wide-gap situations are of interest for two reasons. First, they enable us to 
demonstrate the secondary-flow patterns which may be formed, and secondly 
they are useful in simulating experimental configurations which are sometimes 
used for rheometric measurements (see, e.g. Giesekus 1967). In  these wide-gap 
situations, the theoretical analysis has predictive value, since the experimental 
conditions usually fall within the range of the theoretical approximations. 
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Figure 8 contains theoretical curves of constant primary flow velocity W 
determined numerically for 0, = 60". These are independent of the material 
constants and hence need only be computed once for any given domain. For 
purposes of comparison, we have also included the corresponding curves obtained 
from the analytic solution given by (35) and (36). We see that the analytic and 
numerical curves show the expected departure near the edge of the cone. 

FIGURE 8. Curves of constant primary-flow velocity Ur for 0, = 30" : - x -, numerical 
solution (AT = &, A 0  = n / S O ) ;  ---, analytic curves obtained from the 'irifinitc cone' 
theory. 

The three major types of secondary flow, which may be obtained from the 
numerical solution of (1 3) by variation of a; and a;, are illustrated in figure 9. 
Figure 9(a )  contains the streamlines for a Newtonian fluid (ah = a; = 0) which 
are seen to be directed outwards a t  the rotating cone and inwards a t  the stationary 
plate. On changing the values of the constants to ah = - 0.04 and a; = 0.08, the 
flow pattern changes considerably (figure 9 (b)).  The regions, which occur in the 
gap between the cone and the plate, can be considered to  be the result of different 
influences. The dominating forces in these regions, taken in the order in which 
they occur radially from the vertex outwards, are: elastic, inertial, those due to 
edge effects, followed by patterns influenced by the shear flow between the 
spherical boundaries. It is seen, therefore, that edge effects can affect a large 
proportion of the flow field. 

By further changing the material constants to ah = - 0.5, a; = 0.1, the flow 
field becomes governed by elastic forces with no intermediate inertial region. 
The streamline patterns are very similar to those for a Newtonian liquid, except 
that their direction is changed. This is shown in figure 9 (c ) .  

In  order to  demonstrate that the predicted flow patterns of figure 9 can be 
obtained in practice, we carried out a number of simple experiments using an 
experimental arrangement similar to  that discussed in part 1. This consisted of 
a bakelite cone of semi-vertical angle 60°, and slant height 5-6 cm, which could 
be rotated about its axis of symmetry. A spherical cap, of radius equal to the 
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slant height of the cone, could be placed on top of it if required. The cone was 
rotated by means of a rod attached in line with its axis of symmetry, the other 
end being connected to a motor-driven dynamometer. 

FIGURE 9. Streamline projections when 0, = 30" and ( a )  at = a; = 0 (AT = %Ic, A0 = n / Z O ) ,  
( b )  a; = -0.04, a; = 0.08 (AT = -&, A 0  = n/20), (c) a; = -0-5, a; = 1.0 (AT = %L6, 
A 0  = n / Z O ) .  

The cone was submerged in the test solution, which was contained in a perspex 
tank. It was rotated with its vertex almost touching the bottom of the tank, and 
the streamlines formed in the expanse of liquid between the cone and plate were 
studied. The streamlines were rendered visible by means of blue dye. The three 
fluids used in the experiments were glycerol, which is purely viscous, and two 
elastico-viscous liquids, which were chosen to be 1.5 and 3.0 % aqueous solutions 
of polyacry1amide.t The viscosity of the glycerol was about 15 poises and the 
limiting viscosities (al) of the elastico-viscous liquids were approximately 
8 poises and 50 poises for the 1-5 and 3.0% solutions, respectively. The first 

t Polyacrylamide P260 supplied by Cyanamide of Great Britain. 
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experiment was performed using the purely viscous liquid. The streamlines were 
observed at various rotational speeds and were seen to  be directed outwards a t  
the rotating cone, downwards to  the bottom of the tank and inwards to  the 
vertex (figure 10, plate 1) .  

Figures 11 (plate 2) and 13 (plate 3) contain the flow patterns for the two aqueous 
solutions for polyacrylamide, the rotational speed of the cone being 6 revlmin 
in both cases. The directions of the streamlines are the same as in figures 9(b) 
and 9 (c), and it is clear that  the theory yields a satisfactory description of the 
complex flow patterns. 

Figure 12 (plate 2) contains the flow patterns observed when the cone, this time 
without the cap, was rotated in the same 1.5 yo solution as that used in figure 11. 
Since the flow patterns shown in figures 11 and 12 are very similar, we conclude 
that this type of flow pattern is not due to the shape of the edge, but simply to  
its existence. This is taken as a justification for taking the particular domain 
shown in figure 7. 

Measurements of the radius of the bounding surface between the elastic and 
inertial regions are often used in the characterization of elastico-viscous liquids 
and in particular in the determination of the second-order parameter combina- 
tion a,+a, (cf. equation (34), and see e.g. Giesekus 1967). The interpretation of 
the results is, however, based on an injinite cone-and-plate system (Giesekus 
1967; Walters & Waters 1968), and this cannot take account of edge effects. We 
shall now investigate the influence of these effects on such measurements. 

I n  view of the rapid spatial oscillations of the stream function in the flow 
patterns which occur in these situations, and also the conclusions reached in 3 3, 
it is seen that, in order to  achieve a sufliciently accurate numericaf solution, great 
care must be taken to  ensure that the number of grid points is chosen in accord- 
ance with the results contained in figure 6. For this reason, a complete account of 
edge effects on the bounding radius has not been possible. However, it is possible 
to  give some idea of edge effects in this type of measurement by considering some 
illustrative examples. 

Figure 14 contains streamline projections computed numerically for 
a; = - 0.03125 and a; = 0.0625. Also given is the bounding region calculated for 
the infinite-cone case from the results of Walters & Waters (1968). It is seen that 
there is a measurable edge effect. 

More quantitative results are contained in the following table which gives the 
percentage difference in bounding region based on the finite and infinite-cone 
situations. The values of a;+aA used are those which divide the flow field 

Percentage 
difference in 

4 bounding radius 

- 0.02875 0.0575 5.48 
- 0.03 0.06 6.20 
- 0.03125 0.0625 7.03 

TABLE 1 
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in the finite cone case into three regions of roughly the same size (measured 
radially). 

We would expect the percentage difference to be smaller for smaller values of 
a;, since the elastic region would be smaller and therefore further from the edge. 
We can also anticipate a rapid increase in percentage difference as a; is increased, 
and, when the intermediate region disappears (as in figures 9(c) and 13)) no 
interpretation of experimenta,l results on the basis of an infinite cone is 
possible. 

We may conclude, therefore, that, so long as the ratio of the radius of the 
bounding surface to that of the cone is not too large ( <  +), the interpretation 
of experimental results on the basis of the infinite cone-and-plate system will be 
accurate to within lo%,  but this error will grow rapidly as the intermediate 
inertial region disappears. 

FIGURE 14. Streamline projections when Bo = 30°, Bd = 42", a; = - 0.03125, ui = 0.0625 
(AT = &, A/3 = nj20). - - -, The bounding region calculated on the basis of an  infinite 
cone. 

(iv) Flow situations for small gap angles 

We now restrict ourselves to situations for which the angle between the cone and 
the plate is small. This is of particular interest, since one of the popular methods 
for characterizing the behaviour of elastico-viscous liquids utilizes the cone-and- 
plate geometry with a gap angle sometimes as high as 10" (J. Meissner, private 
communication), but usually less than 4". At least one commercial rheometer, 
the Weissenberg Rheogoniometer (manufactured by Sangamo Controls Ltd.), is 
built on this principle. 

The interpretation of results from the rheogoniometer is based on the following 
assumptions : 

(i) The cone and plate are infinite in extent. This essentially implies that the 
state of steady shear flow existing in the gap is unaffected by the edge (cf. Adams 
& Lodge 1964; Coleman, Markovitz & No11 1966). 

(ii) The gap angle is very small and the rate of shear is constant in the gap. 
(iii) Inertial forces and secondary flows may be neglected (i.e. x1 = 0) .  
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With these assumptions, the physical components of the stress tensor for the 
second-order fluid can be written in the form, 

It can also be shown that the normal pressure on the stationary plate, 
[-p(08)]0=n,2, is given by (cf. equation 39) 

(42) [ -P'(ee)ls=n/2 = Pa - 2y2(a2 + 013) 111 (ria). 

Differentiating (42) with respect to  In r ,  we have 

a 
[ -Pcae,lo=7r/2 = - (43) 

From (43) we see that measurements of the slope of the ( -p(eo)IIf=n12, lnr)  curve 
can be used t o  determine a2+a3. Our theory is based on a flow which is suffi- 
ciently slow. I n  the general case (43) can be replaced by (cf. Adams & Lodge 

where the first and second normal-stress differences v1 and v2 are given by 

I P(@@-P(w) = gl(Y)) 

Pcee, - PW = V2(Y) * 

The total normal force F on the plate (0 < r < a )  is given by 

(45) 

which integrates to  give 

I n  the general case, this must be replaced by (Walters 1968) 

F = na2y2a2. (47) 

nu2 
F = - [  2 w1-g.21. 

The total force F can therefore be used to determine v1 - v2 (or cz2 within the 
restrictions of our theory). 

Q/O, introduces errors of the order of 0.25 yo for a 4' gap. 
t It has been shown (Walters and Waters 1968) that replacing y by the constant value 
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Our main concern in 3 4 (iv) is the influence of edge effects on couple, pressure 
and total-force measurements made under rheogoiiiometric conditions.? Under 
these conditions, the range of applicability of the theory is limited by the high 
shear rates usually encountered, which invalidate the second-order approxima- 
tion. Here, the theory has predictive value only for very low rotational speeds. 
However, one would expect the conclusions concerning ‘edge effects’ to be 
a useful guide in a much wider context. 

I n  the following, we shall not consider the effect of secondary flows or rheo- 
goniometric measurements, since we have established, in agreement with the 
findings of Walters & Waters (1968) for the infinite cone-and-plate case, that  
these are in fact negligible. 

50 - 

8 
0 
0 

X 
3 

$ 2 5 -  - 
u” 

9 
I 
z 

I I 

0 I0 20 30 
+ 0 -  

0,. 

FIGURE 15. The percentage difference between C, and C, as a functioii 
of gap angle 8,. 

It has been shown earlier that, within the confines of the present theory, the 
limiting viscosity ctl may be obtained from measurements of the couple C 
(cf. equation (25)). We shall take, as a measure of edge effects on this measure- 
ment, the difference between C, arid C,, where C, is the value of C given by (25) 
and (26), and C, is the value of C given by (37) and (38). 

I n  figure 15, we have plotted the percentage difference between C,v and C, 
(i.e. (C, - C,)/C, x 100) as a function of gap angle. This graph may be useful to 
experimentalists in assessing the possible edge effects in couple measurements 
for a given gap angle. We see, for example, that  the error is likely to  be less than 
2 yo for cone angles of 4” or less. 

For completeness, we extended the work of part 1 for the parallel-plate 

t The most usual situation in cone-and-plate rheogoniometry is for the test fluid to 
occupy a finite volume and to be held in the gap by surface-tension forces. However, in 
some cases the cone is rotated in a sea of test fluid, as for example is the case when the 
Mooney plattens are used in conjunction with the Weissenberg Rheogoniometer (see also 
Adams & Lodge 1964; Kaye, Lodge & Vale 1968). Here, for mathematical convenience, 
we consider the second situation, in which case surface tension effects are not relevant. 
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geometry and computed the couple in an analogous way to that for the cone-and- 
plate geometry. Figure 16 contains the percentage error as a function of hla, 
where h is the gap between the plates and a the radius of the rotating plate. The 
results are in good qualitative agreement with those given in figure 15 if we 
associate hla with the gap angle 8,. 

We now focus attention on a more difficult facet of rheogoniometry, namely 
the determination of the normal-stress differences, which in our context implies 
the determination of a2 and u3. We neglect the effect of secondary flows and 
compare the values of [ -p(es,]e=,iz obtained from (28) and (29) (with x1 = 0 )  for 
the finite-cone situation with the values obtained from (39) (withf = g = 0 )  for 
the infinite-cone case, the arbitrary function of 8 arising from integration of (28) 
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FIGURE 16. The percentage diflerence between CN and C, as a function of h/a. 

being chosen to give the same pressures a t  r = Ar, 8 = n/2. This is permissible, 
since we are concerned here with the pressure gradient along the plate. Our 
choice has been governed by convenience of presentation of the results. Figures 
17-19 contain this comparison for certain values of a; and a;. They show that, 
whereas the two curves diverge strongly for a 30" gap, the agreement, for 4 and 10" 
gaps, is good up to distances very close to  the edge. This implies that  the state of 
flow given by (33) and (35) is maintained almost up to the edge. 

It is possible to assess edge effects in total normal-force measurements by 
comparing the values FA of F obtained from (47) and the values 4,, of F obtained 
by the numerical integration of (46) in the finite-cone case. However, we must 
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FIGURE 17. The radial variation of the non-dimensional normd pressure on the 
stationary plate for 8, = SO0, a;l = - 1.0, a; = 2.0: - - -, based on numerical solution 
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FIGURE 18. The radial variation of the non-dimensional normal pressure on the 
stationary plate for 0, = loo, a; = - 1.0, aj = 2.0: - - -, based on numerical solution 
(Av = -&, A 6  = ~ / 2 0 ) ;  - , based on in$nite-cone solution. 
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FIGURE 19. The radial variation of the non-dimensional normal pressure on the stationary 
plate for 0, = 4", a,' = - 1.0, a: = 2.0: - - -, based on numerical eolution (Ar = &, 
A8 = n/20); - , based on infinite-cone solution. 
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first consider the importance in this type of measurement of the arbitrary func- 
tion of 0 arising from the integration of (28). The precise form of this function 
will be determined by a number of factors including the type of shear-flow 
existing in the sea of liquid. We should not be surprised, therefore, if a change of 
flow conditions in the sea of liquid produces a corresponding change in the 
pressure [ -pcse)] on the plate. The increase or decrease in [ -p(8e)] would be the 
same a t  all points of the plate, i.e. it would be independent of r . t  We have 
already noted that this would not affect the pressure gradient on the phte,  but 
it would affect the total force. When comparing FA and FN, we are therefore 
neglecting the influence of any shear flow in the sea of liquid, and are estimating 
the effect on total-force measurements of any departure from a state of steady- 
shear flow near the edge of the cone. Table 2 contains the non-dimensional total 
forces (FL and FL) for the infinite-cone and finite-cone situations for a; = - 1 

*,. Fa B'k 

30 4.89 4.1 
10 57.56 57.12 
4 369.2 368.5 

TABLE 2 

and czi = 2 and various gap angles. We see that, whereas the percentage difference 
is about 10% for a 30" gap, it is very small for a 4" gap being of the order of 
a fraction of a percentage. 

The numerical work of § 4 (iv) has indicated that in rheogoniometric situations 
with gap angles of less than 4", the state of flow predicted on the infinite cone and 
plate assumption is valid over most of the flow field and edge effects appear to 
give rise to  only small errors.$ 

Hitherto, the pressure distribution method of determining normal-stress 
differences has been preferred to  the total-normal-force method, since it 
has been argued that the individual pressure measurements can be taken a t  
sufficient distances from the edge for edge effects to  be negligible, whereas it is 
impossible to isolate edge effects in total-force measurements. In  fact, these 
edge effects have sometimes been anticipated to  be quite large (Markovitz 
1965). The work of Ej 4 (iv) has indicated that this point of view is possibly over 
pessimistic, and that both pressure-distribution and total-force methods for 
determining normal-stress differences are not likely to  be unduly affected by 
edge effects. 

We are grateful to Mr R. Williams for assistance with the photography. 

t This is in agreement with the experimental results of Kaye et aZ. (1968), who investi- 

$ Sample results obtained from an extension of the work of part 1 indicate that this 
gated the effect of varying the gap angle on [ -ptBB,]B=n,z for a given shear rate. 

conclusion is also valid for the parallel-plate case. 
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FIGURE 11. Streamlines observed when the cone (with spherical cap) is rotated in a 1.5% 
aqueous solution of polyacrylamide. 

FIGURE 12. Streamlines observed when the cone (without spherical cap) is rotated in a 
1.5 yo aqueous solution of polyacrylamide. 
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